
Hebrew Word Processing

Aaron Wolfe Kuperman
Brooklyn Public Library

Brooklyn, NY

Introduction
Personal computers have brought about
substantial changes in the way American
librarians work. Any text that needs to be
typewritten can be processed faster and
more efficiently with a computerized word
processor. Computer-readable files of docu
ments created elsewhere, including catalog
ing records, can be copied automatically for
local editing without retyping. Newsletters
and bibliographies produced through com
puterized “desktop publishing” approach the
appearance of expensive printing, but re
quire less effort than using a typewriter. In
all areas of public and technical services,
libraries are among the leading benefi
ciaries of the revolution in small, personal
computers.

Anyone trying to work with Hebrew text on
a personal computer tends to be envious
of colleagues whose computing is limited
to the Roman alphabet. At this point in the
development of personal computers, a user
can walk into a store and walk out with a
computer that will run virtually any software
“off the shelf.” When one hits an “a,” one can
generally assume that an “a” will appear on
the screen and will eventually be printed
when the printer receives a command to
print the “a.” Virtually all systems can pro
duce output that any other computerized
system can utilize.

When a usually user-friendly computer is
asked to attempt Hebrew word processing,
it suddenly becomes an anti-Semite (liter
ally; Arabic word processing is even harder
than Hebrew, and many Asian scripts are
even more difficult. See: Becker, Joseph D.
“Multilingual word processing,” Scientific
American, July 1984, p. 96-107). No “off the
shelf’ computer will willingly display Hebrew
characters or write right-to-left (backwards
as the goyim say). Printers can print Hebrew
only as well as they can print other non
standard characters (e.g., italics), which is
to say that if one wants fast, cheap, high-
quality printing, one will have to settle
for two out of three. There is currently no
“standard” system for recording Hebrew

characters in machine (computer)-readable
format, meaning that files produced for one
system are probably unintelligible on any
other system.

Entering the world of Hebrew computing is
like taking a time machine to what English
word processing was like several decades
ago. Except for “hackers” who enjoy doing
things themselves, or someone who con
siders backwardness to be lovably “quaint,”
Hebrew word processing is still extremely
frustrating.

Hebrew Coding

A computer can only tell if the state of some
thing is yes or no, or if a switch is either on
or off. With one switch, there are two possi
ble outcomes, on or off. This on or off is the
smallest unit of information, and is com
monly called a bit. With two switches, or bits,
there are four possible combinations (both
on, both off, only first one on, only second
one on). With seven bits, there are 128 pos
sible combinations, and with eight bits,
there are 256 possible combinations. A
generation ago, a standard system for
representing the American “character set”
was developed using seven bits. The 128
possible codes represented upper and
lower-case letters, all ten numerals, assorted
punctuation marks, and several codes
necessary for controlling a printer. These
128 standard “ASCH” codes are uniform
throughout United States computers, and
with minor modifications, are standard
throughout countries using the Roman al
phabet.

For a variety of reasons, computers prefer
data in units of eight bits, commonly referred
to as bytes. A byte can represent up to 256
different things, in our case, characters. Be
cause of the 128-character ASCII set, the
first 128 possibilities are “spoken for.” While
many personal computers use IBM-style
coding for the “upper” ASCII characters (i.e.,

characters 128 to 255), which facilitates for
eign accents, scientific coding and certain
graphics characters, everyone understands
that there are no guarantees that one’s com
puter will recognize any code other than the
standard “lower” ASCII characters (i.e.,
characters 0 to 127).

ASCII 97 is always a lower-case “a,” and any
computer or word processing program will
display and print this letter when asked to
display or print ASCII 97. When receiving
a command to display ASCII 97, the com
puter system looks to its character genera
tor, which is part of the unchangeable (but
circumventable) ROM —Read Only Mem
ory, to find out how to display an “a.” This
type of standardization is totally lacking, at
present, for Hebrew.

Three methods are currently available to
represent Hebrew text in computer-readable
format. One possibility makes use of ASCII
characters 128 to 257. The second possi
bility utilizes the ASCII symbols for lower
case Roman letters to represent Hebrew,
thereby rendering it impossible to produce
a document including Hebrew and a full,
i.e., upper and lower-case, English charac
ter set. A third possibility uses two bytes
(characters) for each letter, the first byte in
dicating which alphabet is in use, and the
second byte indicating which letter.

The result is total incompatibility. Not only
must each system give special instructions
to the computer and printer as to what to
display or print when it receives any of the
ASCII codes used for Hebrew (i.e., to ignore
the character generator in ROM and print
a Hebrew character for a given ASCII code),
but the various systems for Hebrew are to
tally incompatible. One system may use
ASCII 97 to represent an alef, a second sys-
tern may use ASCII 152, while a third sys-
tern may represent an alef with two charac
ters, the first to indicate Hebrew, and the
second, perhaps an ASCII 97, to indicate the
alef.

Judaica Librarianship Vol. 3 No. 1-2 1986-1987 17

Hebrew Character Sets

Prospective buyers of Hebrew word pro
cessing systems have to do a lot more shop
ping around, a lot more research, and often
settle for a more expensive system that does
less, than someone wanting an English-only
system. Whereas top-of-the-line (“bells and
whistles”) word processing programs cost
under $300, Hebrew systems usually cost
about $500 and are inferior in terms of fea
tures other than the ability to do Hebrew.
Furthermore, whereas one can normally
buy virtually any computer, and then find
the appropriate version of desired software
to run on the system selected, when shop
ping for a Hebrew word processing system,
one has to carefully coordinate the purchas
ing of all hardware (the computer and printer)
and software (the word processing program).

The usual way a word processing system
displays characters is: when told to display
an ASCII code, it looks at the character
generator to see what to put on the screen.
As a fairly standard option, most computers
use a “graphics card” (an additional hard
ware element) that makes it possible for
software to control the image on the screen
on a dot-by-dot basis, thereby facilitating
production of better and more characters
than can be done through the character
generator. Since the standard character
generators are not programmed to display
Hebrew characters, in order to display He
brew text, one must either replace or cir
cumvent the character generator.

Many systems come with what is commonly
referred to as a “Hebrew chip,” which is a
modification to the hardware that produces
Hebrew characters in response to various
commands. This chip either supplements
or replaces the standard character gener
ator. Since it is hardware, it tends to be fairly
expensive, and cannot be easily inserted
and removed; however, it is always in the
computer and one can usually use it with
whatever software is running. For example,
if the regular software wants to display “n”
for ASCII 164, the chip might change that
to a khaf. If such is the case, depending on
the chip, whenever ASCI1164 is called up,
even in a program not designed for Hebrew,
a khaf will appear. In some cases, this
means that the computer can insert Hebrew
characters into any program; in other cases,
it means that any program not designed for
Hebrew characters will “bomb” (not work)
when run with the chip in the computer.

The second alternative is to have the He
brew characters produced by software. This
requires having a graphics card. Whenever
a character is requested, the program, in
effect, detours away from the character

generator and looks to the program for the
specifications of what to put on the screen.
The Hebrew program must be running
whenever Hebrew characters are desired
for screen display; absent the Hebrew pro
gram, only the regular character set will be
displayed. Avoiding purchase of a special
ized Hebrew chip saves money, though in
general, a program that utilizes graphics to
produce text is slower than one using the
character generator or a special “chip.”

A third possibility is becoming available. The
leading producer of graphics cards has a
new model that in effect creates a program
mable character generator with the capa
bility of dealing with a dozen fonts simul
taneously (offering a maximum of 3072
characters instead of the 256 that is the cur
rent norm). Since this will probably become
a “standard” piece of hardware (unlike a spe
cially manufactured Hebrew “chip”), it will
be more compatible than the chip, with
other software. This new card will combine
the speed of relying on the character gener
ator with the flexibility of graphics-based
screen display. In theory, one programs the
card’s alternative character generator to pro
duce Hebrew, and it remains programmed
until it is reprogrammed. This card is still
very new, but if it works as advertised, most
word processing programs will probably be
modified to exploit its features.

Several additional considerations remain for
anyone shopping for a Hebrew word proces
sor. The simplest and least expensive sys-
terns produce Hebrew consonants and
upper-case Roman letters. Many systems
produce a complete Roman alphabet and
Hebrew, but some do not offer vowels or
special symbols useful for writing other Ian-
guages that use the Hebrew alphabet, such
as Yiddish. Some systems offer not only He
brew and Roman characters, but other al
phabets as well.

A person writing business letters almost ex
clusively in Hebrew, may have no need for
vowels, and while he might need to insert
an occasional word in English, he would not
need the lower-case English letters. Most
bilingual documents require a full English
character set (including lower-case Roman
letters), but not Hebrew vowels. Vowels and
other diacritics are required, however, for
many documents produced for religious ap
plications, almost any text discussing He
brew grammar, and virtually everything pro
duced for children. Many libraries, scholars
and community groups may require addi
tional scripts if they need to produce docu
ments in Arabic and Russian.

Bi-Directional Wordwrap

Inserting Hebrew text, even as transliterated
“gibberish” (e.g., reversible Romanization)
into a system not designed for Hebrew isn’t
difficult. Assuming one has a printer that
will print said gibberish as Hebrew, it is quite
reasonable to input transliterated text to be
subsequently printed as Hebrew. Getting
the computer to type “backwards” is not a
major problem (in insert mode one can
simulate backward typing by backspacing
after each keystroke). Wordwrap is a differ
ent story.

On a typewriter, a bell generally rings at the
end of each line, and one physically returns
the carriage to the beginning of the next line.
On a computer, that is not usually the case.
One keeps typing to the end of the para
graph, and the computer automatically fits
as much text as will fit within the prescribed
margins on each line, and then goes to the
beginning of the next line. When typing a
left-to-right document which includes an oc
casional Hebrew word, this works reason
ably well. If one is trying to insert several
Hebrew words into a predominantly English
document, however, or is writing a docu
ment that is truly bilingual (alternating be
tween Hebrew and English with substantial
segments in both languages), the standard
wordwrap systems will not work.

Assume that two words of Hebrew are to be
inserted into a predominantly English docu
ment, and the line comes to an end between
them. Wordwrap logic designed for English
will put the first word at the end of the first
line, and the second word at the beginning
of a second line. Since the two-word Hebrew
phrase is written “backwards” (from the per
spective of the English-oriented wordwrap
program), the program will end up putting
the second word of the Hebrew phrase at
the end of the first line, and the first word
at the beginning of the second line.

Some programs have a wordwrap feature
that can work with Hebrew or English. This
can backfire. Using the above example, the
program will accurately place the first word
of the Hebrew phrase at the end of the first
line, but upon seeing that the next word is
Hebrew, it will place it at the right margin
of the next line (which from a Hebrew per
spective is the beginning of the next line).
The rest of the document is in English, how
ever, and it might try to print that English
text starting at the left margin of the same
line. The absurd result is that the first word
of a Hebrew phrase will be placed at the end
of the first line (i.e., the right margin where
it should be), and reading left-to-right, the
next English sentence will be found on the
following line, followed by the second word
of the Hebrew phrase from the preceding
sentence.

18 Judaica Librarianship Vol. 3 No. 1-2 1986-1987

To meet a wide range of needs, a Hebrew-
English wordwrap feature requires consid
erable flexibility. It must be powerful enough
to adjust to a document that is predomi
nantly right-to-left, predominantly left-to-
right, or mixed. Some systems do this, but
some do not. Using wordwrap, one of the
most basic word processing features, is pos
sible in Hebrew-English word processing,
but it requires great care by the user in
selecting and using the system.

Different Computer Systems

There are several “lines” of personal com
puters currently available. The most popu
lar in offices is the line of IBM-dompatibles,
This includes personal computers produced
by IBM, and a wide variety of computers de
signed to run software produced for the IBM
(or to be technical, to use software written
to be compatible with the MS-DOS operat
ing system common to both IBM and the
compatibles). To a certain extent, this is the
de facto standard computer, and while it has
many deficiencies, its leading role means
that a wide variety of software is available
for it.

Its leading competitor is the Macintosh com
puter produced by Apple Corporation. While
the “Mac” can produce ASCII output just as
well as an IBM-style computer, it is a very
different computer. Interestingly enough for
Hebrew word processing, the Mac is de
signed to work with a variety of fonts. This
feature was apparently designed to allow
display of different Roman fonts, but regard
less of motivation, it is easy to exploit for
Hebrew. Using suitable software, a Mac can
display Hebrew with substantially less dif
ficulty than an IBM. Several systems now
exist to do Hebrew word processing on the
Macintosh.

Several other computers, such as the Com
modore and the regular Apple II family of
computers, are generally used for relatively
simple educational applications and games;
however, there are viable systems for He
brew word processing for these relatively
inexpensive computer systems, though
there are fewer software packages available
for them.

Printing Hebrew

Getting a computerized system to print He
brew characters is relatively easy. The de
gree of difficulty is no greater than that in
volved in making a computerized system
print italics. While fast and cheap high-
quality results are unavailable, one can get
letter-quality results either fast or cheap, and
almost letter-quality results both fast and
cheap.

There are two commonly used ways to print
a document. One is with a formed charac
ter system, similar to that of a typewriter. The
results are, by definition, “letter quality” (i.e.,
equivalent to a good typewriter’s output).
The most common version of this method
for a personal computer is a “daisy wheel.”
Like a typewriter, this prints by having a
backwards image of the desired letter hit
the paper through an inked ribbon. The dis
advantage of a formed character system is
that one is limited to a fixed number of
characters by the daisy wheel or typewriter.

The second way is to have the computer,
or a computerized element in the printer,
make a grouping of dots that resembles a
letter. In its cheapest form, a simple dot ma
trix printer, this method is fast and the out
put “looks” as though it was printed by a
computer. Its most expensive form, a laser
printer, produces results that are at least as
good as “letter quality.”

Most “daisy wheel” systems can handle
about 100 characters. Thus one wheel can
print a standard ASCII character set, and
maybe a few extra characters. If additional
characters, such as italics are wanted, ex
tra wheels are needed. There are daisy
wheels with both English and Hebrew
characters, but unless one is content with
vowelless Hebrew and only upper-case Eng
lish, Hebrew-English word processing re
quires two daisy wheels. Occasionally, there
are references to printers with two daisy
wheels, or a daisy wheel with 200 charac
ters (i.e., two complete character sets), but
these are not widely available at this time.

Printing more than a single character set
(such as full Roman and full Hebrew charac
ter sets) means using extra wheels. In prac
tice, this requires sitting by the printer while
it is printing, and when the text indicates the
need for a different wheel (i.e., to change
from a standard Roman typeface to Hebrew
or italics), the user manually changes the
wheel. Many word processing programs
thoughtfully support such changes by beep
ing when it is time to change wheels, and
indicating on the screen which wheel to in
sert; however, having to sit next to the printer
changing daisy wheels by hand is rather
tedious and totally negates many of the ad
vantages of a computerized word process
ing system.

The alternative is a system that—instead of
printing whole letters on the paper—places
dots. A good system can place 90,000 dots
per square inch, which is at least as good
as a typewriter or daisy wheel (i.e., “letter
quality”), and approaches the results one
gets from conventional typesetting. A ma
jor advantage of a dot matrix or laser sys-
tern is that one can integrate a variety of

fonts (such as Hebrew or italics) without dif
ficulty.

A cheap dot matrix printer costs a few hun
dred dollars, is very fast, and produces
rather tacky looking output. It is generally
considered unacceptable for a business let
ter or any other application for which a high
level of readability and neatness are
desired. A laser printer, which costs several
thousand dollars, produces results equal to
or better than a formed character printer,
and works faster than any other type of
printer. A good dot matrix printer costs about
a thousand dollars and produces results
that approach those of a laser printer almost
as fast as a cheap dot matrix, but at a speed
well below that of laser.

Many dot matrix printers support user-
designed fonts. If the system does not pro
duce the desired fonts, the user can design
his own, dot by dot. Various software sys-
terns facilitate designing one’s own fonts,
though this may not be simple. Some soft
ware systems designed to enhance inex
pensive dot matrix printers will cause them
to produce a wide range of characters simi
lar in quality to that of the best dot matrix
printers, but at speeds that are unreasonably
slow, in part since in order to improve the
quality of a dot matrix printer’s output, a sys-
tern must place more dots on the paper, and
printing additional dots takes additional
time.

Even if a computer cannot display Hebrew
characters, a printer can independently print
Hebrew characters. A text might call for the
printer to print “a” in font three, and if font
three is Hebrew, and ASCII 97 (lower-case
“a”) in that font is alef, then the printer will
print alef even though the screen shows an
“a.” Producing Hebrew output without a He
brew word processing system is difficult
since one must enter the Hebrew text in Ro
man letters.

Both dot matrix printers and formed charac
ter printers use the same ASCII codes.
Since there are no standard codes for He
brew, in order to print Hebrew, the word pro
cessing program has to either produce
ouput designed for the specific printer in
use, or address each dot in controlling the
output (a job usually done independently
by the printer). This problem is not insur
mountable, but it demands more care and
expense than is required of someone work
ing with standard Roman alphabet text.

A third printing option exists, but hasn’t been
exploited widely, especially for Hebrew. One
can have a fast inexpensive printer, proba
bly a dot matrix, for rough drafts and per
sonal non-business correspondence, and
then arrange to have someone else produce

Judaica Librarianship Vol. 3 No. 1-2 1986-1987 19

letter-quality (or typeset) output for impor
tant documents. Such arrangements with
commercial typing services, typesetters,
and better-quality photocopy shops exist for
English word processing output, but would
at present be awkward for Hebrew since ev
ery word processing system uses different
codes. This might become a popular alter
native as the number of people doing He
brew word processing increases, and if the
codes become standardized.

Printing Hebrew is relatively easy, at least
compared with the problems of producing
and editing Hebrew text. Many computer
ized printing systems were designed with
the goal of facilitating unusual fonts. Since
such systems print without human involve
ment, and, in fact, this is one of their major
advantages over manual systems, the direc
tion of the text is totally irrelevant. The only
serious problem is the lack of standardiza
tion in coding Hebrew. This necessitates
using a printer programmed for a given word
processing system, or requires the word
processing system (or even worse, the user)
to, in effect, program theprinterto print the
bilingual output of the word processor.

Summary and Conclusions

Some of the complexities of Hebrew word
processing are inherent in the differences
between Hebrew and English, such as the
problem of producing a document contain
ing text oriented in two different directions.
This sort of problem will be solved as more
people get experience in using and design
ing Hebrew word processing systems.
Other problems are somewhat political,
such as weighing the interests of the
businessman or government official who
does not use vowels in correspondence
versus the interests of scholars and
teachers for whom the full range of Hebrew
diacritical marks is essential.

Lack of standardized coding for Hebrew is
perhaps the most serious problem. With
standardized coding, files from one system
would be transferable to any other. One
could buy a screen display system from one
vendor, a text processing system from an
other, and a printer from yet a third. This flex
ibility exists for English word processing sys-
terns and is highly beneficial. Excluding the
kludged (“quick and dirty”) system of put
ting Hebrew characters in place of lower
case English (thereby rendering it impos
sible to produce respectable English cor
respondence), two coding systems are be
ing widely used.

One coding method uses the “higher level
ASCII characters,” that is to say, ASCI1128
through ASCII 255. A major disadvantage
of this method is that not all computer-
related equipment can process higher ASCII

characters, since some equipment is de
signed to work only with the seven-bit lower
ASCII characters. As stated above, the “up
per” ASCII characters are not standardized.
Hebrew is competing with a variety of other
non-Roman scripts for use of the upper
characters, including Arabic, Greek, Cyril-
lie (Russian), and the various South Asian
(Indian) languages; when all forms of all
these alphabets are considered (including
both upper and lower-case forms of Roman
letters, initial, medial and final forms of Ar
abic letters, etc.), it is unlikely that a gener
ally accepted international standard govern
ing the upper ASCII characters would
include Hebrew. A convention (other than
an official international standard) for ex
pressing Hebrew with “uppef’ ASCII charac
ters for Hebrew word processing could be
developed, however, and it would be possi
ble to make such a convention compatible
with the two-byte “standard” that will prob
ably develop for defining Hebrew characters.

The only
serious problem
is the lack of
standardization
in coding
Hebrew.

The other system uses, in effect, two
characters for every letter, one to indicate
the alphabet being used, and the second
to indicate the letter. This offers great flexi
bility, since 256 different character sets can
be indicated (through the first character),
plus 256 characters within each character
set. The drawback of this method is that ev
ery character requires two bytes instead of
one, meaning that it will require twice as
long for the computer to process, and take
up twice as much storage space. If a stan
dard system for indicating fonts were to in
elude a device for indicating the Hebrew
character set, then Hebrew word process
ing would become almost as easy as Eng
lish word processing. Given implementation
of the proposed character set being devel
oped for Hebrew by the Research Libraries
Group in cooperation with the Library of
Congress, and the structure of the Hercules
Graphics Card Plus RamFont system, this
alternative may be the way of the future.

Appendix

Sources of Product Information
This list is by its nature incomplete. New
products are constantly being introduced,
and as is the case with personal comput
ing in general, all existing products are reg
ularly being improved. Differences in avail
ability exist even between New York and
California, and all the more so between
North America, Europe and Israel.

Hebrew word processing programs
1 This list features the better-known products

for MS-DOS (IBM-compatible) and Macin
tosh computers that are available in the New
York area in the spring of 1987; the list in
no way attempts to be comprehensive or
critical. With programs enumerated below,
one can display, edit, and print Hebrew
characters. All programs are for MS-DOS
unless stated otherwise.

Achbar, Davka Corporation, 845 N. Michi
gan Ave., Suite843, Chicago, IL60611, (800)
621-8277. Formerly called “Mouse Write,”
this is a Hebrew-English word processing
program for the Macintosh. The company
markets a variety of Hebrew-English word
processing programs, as well as other types
of Jewish-oriented software for a variety of
computers.

Alef-Bet, Quad Inc., 23601 Draco Way,
Canoga Park, CA 91307, produced by Gryn-
berg Engineering in Israel, is a word pro
cessing system that uses a special “chip”
rather than software. This program is widely
used in Israeli government offices.

Computer Linguist, P.O. Box 70742, Eugene,
OR 97401. Formerly known as Pangloss.

Intext, Intex Software Systems International,
Ltd., 488 Madison Ave., New York, NY
10022. Software-based program for Hebrew-
English word processing, that also has the
capacity to do Arabic and Russian scripts.

MacInHebrew, c/0 Joseph Weinstein, MIT
Hillel, 312 Memorial Drive, Cambridge, MA
02139. This is a non-commercial “share
ware” system for Hebrew-English word pro
cessing on Macintosh computers.

Mince, Davka Corporation (address above),
is a word processing program for MS-DOS
computers that can be either software or
chip-based.

Multi-Lingual Scholar, Gamma Productions,
710 Wilshire Blvd., Suite 609, Santa Mon
ica, CA 90401. Software for multi-lingual
word processing in Hebrew, Roman, Cyril-
lie, Arabic, Greek, and other scripts. Sup
ports all Hebrew vowels, including special
characters used in Yiddish.

20 Judaica Librarianship Vol. 3 No. 1-2 1986-1987

The Library Automation Scene in Israel—1986

Elhanan Adler
University of Haifa

Kuperman (Continued)

Wordmill, Bigger Byte, Inc., 1 S. Central Ave.,
Valley Stream, NY 11580. This is an Israeli
word processing program based on a He
brew “chip.”

Font programs that include Hebrew

These programs work with dot matrix or la
ser printers to produce a greater range of
fonts and/or higher quality fonts than would
otherwise be available. They supplement
but do not replace a word processing pro
gram. The programs listed below include
Hebrew fonts.

Fancy Font, Soft Craft, Inc., 16 N. Carroll
Street, Suite 500, Madison, Wl 53703.

Fontrix, Data Transforms, 616 Washington
Street, Denver, CO 80203.

Lettrix, Hammerlab, 5700 Arlington Ave.,
Riverdale, NY 10471.

User groups

User groups often provide honest and in
dependent information about using com
puters. The two listed below specialize in
Hebrew and Judaica applications of per
sonal computers, and both publish news
letters containing valuable and current in
formation.

Hebrew Users Group, Berkeley Hillel Foun
dation, 2736 Bancroft Way, Berkeley, CA
94704.

Computer Hebrew Users Group of New
York, c/0 Michael Rand, 21 Bennett Ave.,
New York, NY 10033.

Aaron Wolfe Kuperman is a Librarian work
ing for the Brooklyn Public Library in Brook
lyn, New York. The paper is based on a pre
sentation at a workshop on Hebrew
computing held at the Jewish Theological
Seminary on Jan. 19, 1987 under the span-
sorship of the New York Metropolitan Area
chapter of the Association of Jewish
Libraries.

Introduction

The major development in the Israeli library
automation scene during 1986 was the large
number of libraries initiating automated ser
vices. In virtually all cases, the libraries
chose one of two commercially marketed
Israeli library systems: ALEPH or Sifriah-83.

ALEPH —Libraries

In 1985, I reported on the selection of
ALEPH by the University Grants Commit
tee as the basis for the university-wide net
work and on the changes in the network
concept towards a highly decentralized sys-
tern (Adler, 1985). During 1986, the decen
tralized VAX computer version of ALEPH
was installed in several Israeli universities.

The initial intent was to run-in the ALEPH
VAX version at the Technion-lsrael Institute
of Technology while maintaining the Hebrew
University’s older CDC version until the
ALEPH VAX version was completed and
fully tested. This plan was unfortunately not
followed, as the Hebrew University found
it necessary (primarily for financial rea
sons) to drop its leased CDC sooner than
planned. Testing at the Technion went on
simultaneously with conversion of the vari
ous Jerusalem-based libraries (each with
its own particular problems which had to be
solved in the process) and, as a result, the
run-in procedure did not progress as
smoothly as it might have.

The Hebrew University itself is now running
ALEPH on several VAX computers at its var
ious campuses. The catalogs of the Library
of Social Sciences and Humanities at the
Mount Scopus campus and the Library of
Sciences at the Giv’at-Ram campus have
been completely converted, and these
libraries function totally online, without a
card catalog. Other University libraries (Law,
Education, Archaeology, and Agriculture)
are in the process of catalog conversion;
however, public access terminals are not yet
in use. The Jewish National and University
Library (JNUL) closed its card catalog in

1985, and all materials cataloged since then
are accessible via computer only. There are
no plans for mass conversion of the old
JNUL card catalog in the foreseeable future.
Each Hebrew University library catalog is
a separate, independent database with its
own authority files—making a campus-wide
search rather difficult.

The Technion was the first major library sys-
tern outside the Hebrew University to use
ALEPH VAX, and it has served as the test
site for various ALEPH modules. Despite
the fact that the Technion has a highly de
centralized system of 24 libraries, it is main
taining a centralized automated system with
a single database of all its libraries’ hold
ings. As of April 1987, the central library and
five departmental libraries are online, in
eluding circulation. Other libraries await
conversion and a .larger computer; mean
while, they are using a campus-wide COM
microfiche catalog, in addition to main
taining their card catalogs. All Technion cat
aloging since 1981—covering a very high
percentage of “ live” material in tech-
nology—is in the database.

The Ben Gurion University of the Negev and
Tel-Aviv University libraries have also moved
their files from Jerusalem to local VAX com
puters. Ben Gurion plans to have public ac
cess terminals available in Fall 1987; mean
while, current cataloging and retrospective
conversion are proceeding. Circulation via
ALEPH is limited to those items already in
the database; a parallel manual system is
still in use for unconverted materials. Tel-
Aviv University activity consists also primar
ily of current cataloging and conversion at
this stage. Tel-Aviv will have a multiple data
base system, reflecting its system of sev
eral large, highly autonomous libraries.

The Weizmann Institute of Science Library
is committed to ALEPH also, even though
its central library is currently using the
microcomputer-based “Sifriah-83” system
(see below).

Judaica Librarianship Vol. 3 No. 1-2 1986-1987 21

	D:\Users\jgalr\Downloads\vol3no1-2\cnlibcopier@huc.edu_20140203_105628.pdf
	D:\Users\jgalr\Downloads\vol3no1-2\cnlibcopier@huc.edu_20140203_105733.pdf

